
Abstract- The objective of this study is to (1) develop and 
apply efficient algorithms to simultaneous intracranial 
electroencephalographic signals recorded from multiple 
implanted electrode sites to evaluate the spatial and 
temporal behavior of seizure precursors and (2) to 
demonstrate the utility of multiple feature and channel 
synergy for predicting epileptic seizures in patients with 
mesial temporal lobe epilepsy.  Short-term seizure 
precursors within a 10-minute time period are 
investigated.  The method consists of preprocessing, 
processing, feature selection, classification, and validation 
steps.  The preprocessing step removes extraneous data 
and captures the salient signal attributes while 
maintaining the integrity of the signal.  Processing is a 
three-step approach that includes first-level features 
extracted from the raw data, second-level features 
extracted from first level features, and third-level features 
extracted from second-level features.  A genetic algorithm 
selects the optimal features off-line from a preselected 
group of features to serve as the input to the classifier.   
Keywords- seizure prediction, genetic algorithm, feature 
selection 
 

I. INTRODUCTION 
 
In humans, epilepsy is the second most common neurological 
disorder, next to stroke, with 50 million people worldwide 
affected by epilepsy.  Of these individuals, 25% do not 
respond to available therapies [1].  There is currently an 
explosion of interest in predicting epileptic seizures from 
intracranial EEG (IEEG) that has its roots in experimental 
and theoretical work first published in the 1970s.  Many 
potentially useful algorithms for seizure prediction have been 
presented in the literature, but none that take a comprehensive 
approach to analyzing seizure-free (baseline) as well as 
preseizure (pre-ictal) periods.   Most work in this area also 
limits analysis to the one or two electrode contacts nearest the 
region where electrical signs of seizure onset are first 
recognized, neglecting the idea that seizure precursors may 
evolve spatially, as well as temporally, prior to electrical 
seizure onset.  Emphases on the seizure focus region, and the 
lack of adequate statistical validation, warrant studying 
seizure precursors from a variety of implanted electrode 
locations recorded simultaneously.   
 

II. METHODOLOGY 
 
The methodology in this research consists of the steps shown 
in Fig. 1.   
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Fig. 1. Methodology for feature selection and epileptic seizure prediction. 

 
A. Data Generation 
 

Collaborating neurologists and neurosurgeons compiled a 
database of 16 patients affected by mesial temporal lobe 
epilepsy (MTLE) by storing both video and IEEG signals on 
Super VHS (SVHS) tapes.  To convert the analog signal to 
digital for further off-line analysis, the IEEG data were 
copied to compact discs.  There are a total of 1770 hours of 
data available for this research.  Patients were monitored 
during 3- to 14-day hospital stays via video monitoring and 
EEG and IEEG data collection.  Data were collected on a 
standard Nicolet 5000 video EEG acquisition system utilizing 
a 12 bit A/D converter and sampled at a rate of 200 Hz with 
bandpass filter settings of 0.1-100 Hz.   Synchronization of 
video and EEG was achieved and stored for offline analysis 
of clinical onsets, asleep and awake cycles, and overall 
patient behavior during the stay.  Both viewing the videotapes 
and looking at the EEG signals identified the patient's state of 
consciousness.  The asleep/awake cycles were correlated with 
the IEEG data to establish a more complete database.  The 
number of CDs per patient is dependent on the amount of 
data stored during the patient�s pre-surgical evaluation.  Each 
CD contains approximately 8 hours, yielding a total of 8 to 
275 hours of data per patient.   
In the presented research, fifteen minute records from all 
IEEG channels were clipped from the original raw data to 
address the ten minute prediction horizon.  Both baseline and 
ictal records were created from the database.  Clipping 10 
minutes before the seizure onset and 5 minutes after the 
seizure onset created the ictal records.  The 15 minute 
baselines were clipped according to the following criteria:  1) 
each record at least three hours from the onset or termination 
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of another seizure or any unknown activity; 2) each seizure 
must be a lead seizure (only the first in a cluster of seizures is 
used); 3) at least four brain regions are monitored.  The three 
hour criteria is based upon recent results indicating that at 
least this temporal separation is required to observe seizure 
precursors [5]. A total of six patients were analyzed, 
comprising 39 preseizure/seizure records and 105 baseline 
records.  
 
B. Preprocessing 
 

All IEEG signals serve as inputs to be preprocessed.  The 
preprocessing step captures the salient signal attributes, and 
maintains the integrity of the signal.  To minimize the 
common mode artifact while maintaining the integrity of the 
signal, the bipolar signal is found by subtracting spatially 
adjacent channels to obtain the differential mode signal.  In 
this research, the contents of one channel include all 
potentials at the given electrode recorded referentially.  After 
removing the common mode artifact, a 60 Hz digital notch 
filter is used to remove line noise.   
 
C. Processing 
 

Processing is a three-step approach that includes first-
level features extracted from the raw data, second level 
features extracted from first level features, and third-level 
features extracted from second-level features.   

 
Table 1.  First level features. 

 
Candidate features were selected based on criteria 

described in [2], expertise, observations, and our 
understanding of EEG signal characteristics.  We desire a 
subset of first-level features that will extract uncorrelated 

information and are capable of real-time implementation.  
Intuitively we expect better performance using features from 
different domains.  Based upon our research efforts, and  a 
thorough review of the literature, the features presented in 
Table 1 were selected as first-level features.  All first level 
features selected are implementable in real time.  After 
evaluating the signals from the extracted first-level features, 
visual analyses of the feature plots and class-conditional 
probability distribution functions (PDFs) were examined.  
This visual analysis paved the way for selecting second-level 
features.      

The second and third level features are identified in the 
third and fourth segments of the genetic algorithm 
chromosome shown in Figure 2. 

 
D. Window length 
 

To evaluate most features, it is important to maintain 
stationarity of the data segment.  Statistical tests reveal quasi-
stationarity of the EEG signal anywhere from one second 
(200 points) to several minutes [3].  Esteller et al. have 
suggested methods to optimize the window length in such 
experiments; however, to optimize the processing window 
when analyzing signals spatially and temporally would be a 
monumental and impractical task.  For one patient for 
example, to optimize the window length could potentially 
mean 6*22 = 132 different window lengths provided we had 
a different window length for each first level feature and each 
channel.  This is impractical. 

Because seizures spread so quickly, a displacement as 
small as possible that does not provide too much variability is 
desired.  We experimented with values ranging from 0.25 
seconds to 5 seconds and observed that a displacement of 500 
points and the window length to 2000 points should provide 
reasonable propagation resolution of seizure precursors and 
the ability of multi-channel analysis to effect prediction.  
These values are used for all tests and are in line with the 
definition of stationarity found in the literature and 
preliminary prediction results.             

 
E.  Genetic Feature Selection 
 
Both an exhaustive search and genetic approach were 

considered for the feature selection stage.  After a few trial 
runs with several patients, we found the genetic algorithm to 
provide optimal results by testing a maximum of 850 features 
compared to over 4300 features calculated when using the 
exhaustive search approach.  The genetic algorithm applies a 
novel adaptive chromosome to select the best among some 
4300 features to serve as inputs to a classifier.  Initially, the 
genetic algorithm generates 48 random chromosomes and 
compares their performance using Fischer's Discriminant 
Ratio (FDR) as the objective function.  A subset of 
approximately 70% of data are used for selecting the optimal 
features, while the remaining 30% of data are reserved for 
testing.  The algorithm compares each preseizure training 
record with each baseline training record and takes the 
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average of the FDR values as the objective values.  The 
resultant chromosomes are weighted based on their fitness 
values and the roulette wheel selection method is used to 
select surviving features.  The probability of crossover 
remains constant at 70%, while the probability of mutation 
remains at 10%.  A constrained crossover approach permits 
crossover within each subchromosome, and prohibits 
crossover across subchromosomes. That is, for each iteration, 
only one element within the channel, first level, second level, 
or third level subchromosomes may crossover at a time.  The 
genetic algorithm chromosome is shown in Figure 2.   

 

      
Fig. 2.  Genetic algorithm chromosome. 

 
 The gene population consists of all combinations of 

features identified in Figure 2.  The first 3 to N (variable 
depending on the number of channels) bits of the 
chromosome represent each of the channels.  The next 3 bits 
represent the six first level features, while the next 4 bits 
represent the fourteen second level features and the option to 
choose the first level only.  The last 4 bits represents the 12 
third level features.  The unused chromosome expressions are 
associated with an active penalty term if an unassigned 
chromosome is selected.   

 
F. Classification and Validation 
 
The classifier is in the developmental stages.  The classifier 

will put the output of the feature vector into the class 
�preseizure� or �no preseizure�.  The classifier used will be 
determined after sufficient results are achieved, scatter plots 
are analyzed, and a reasonable assessment can be made 
regarding the best means for classifying the two data classes. 
 In her work, Esteller found the Probabilistic Neural 
Network (PNN) to most adequately provide class separability 
[4].  The PNN will be considered in this work; however, 
because the objective in this research is to predict rather than 
detect the UEO, the class definition used by Esteller, and 
perhaps the PNN itself, will not be adequate.   

 The literature review found that most research groups in 
the seizure prediction field provided limited validation in 
their results.  Validation using split sample or �hold-out� 
techniques will be used in this research.  To use split-sample 

validation, a representative sample (test set) of the data is 
randomly selected and is not used in any way during training.                      

After training, the network will be run on the test set.  The 
resultant error will be the unbiased generalization error.  In 
situations where the data sets are too small to justify using 
split-sample techniques, cross validation and bootstrapping 
will be considered as alternative techniques to validate the 
network.      
 
III. RESULTS 
 
 The genetic algorithm was run on six patients in the 
database, to determine the optimal feature combination.  The 
data analyzed included 39 preseizure and 105 baseline 
records.  The genetic algorithm was run on each first level 
feature combination and each of the 32 wavelet packet 
energies, for a total run time of approximately 40 hours per 
patient.  The best feature combinations for all first level 
feature runs were tabulated and results analyzed.  The best 
feature combinations were patient specific.  None of the six 
patients resulted in the same optimal feature combination.  
Furthermore, the focus channel was never selected as the best 
channel.  Table 2 identifies the best feature combinations for 
each patient analyzed. 
 

Table 2.  Best feature combinations. 

 
The genetic algorithm compared two classes:  baseline 

data and preseizure data.  A trial run was conducted with one 
patient using only the awake baseline records.  The results 
revealed clear distinguishability between the preseizure and 
baseline records.  The asleep and awake baseline records 
were incorporated and the genetic algorithm run again for 
each feature combination.  Although separability between the 
two classes was revealed, a clear degradation in performance 
was observed when the asleep baseline records were 
included.  Both asleep and awake records were included in 
the genetic algorithm runs for the remaining five patients.       
 
IV. DISCUSSION 
 

To date, most research has analyzed the focus channel 
since it appears that the focus channel is the channel from 
which the seizure generates.  Only the accumulated energy 
has given promising results for seizure prediction when 
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evaluating the focus channel[5].  However, the accumulated 
energy feature requires the ability to distinguish between the 
asleep and the awake states of consciousness.   

One dimensional scatter plots were created to observe the 
class separability and determine the need to combine features 
for classification.  Two dimensional scatter plots revealed 
increased class distinguishability.  Figure 3 depicts a one 
dimensional scatter plot for the best derived feature for one 
patient analyzed.  Figure 4 depicts a two dimensional scatter 
plot for the same patient including the best derived energy of 
the wavelet packet feature and the best derived curve length 
feature.  Distinguishability is evident in the one dimensional 
scatter plot, and improved when two derived features are 
used.  Figure 5 displays the frequency response for the best 
wavelet packet for the same patient.  The center frequency for 
this wavelet packet is around 58 hertz, in the gamma 
frequency band.  Generally, the frequencies of interest in the 
IEEG signals range from 1-30 Hz, while gamma frequencies 
(30-60 Hz) have been observed at the cellular level and are 
generally stimulus dependent.  This finding warrants further 
study and investigation of the higher frequency bands. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Fig. 3.  One dimensional scatter plot for patient 9. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Fig. 4.  One dimensional scatter plot for patient 9. 

The optimal feature vector is then selected using a 
forward sequential approach.  The neural network classifier is 
trained to identify inputs as preseizure or no-preseizure.  The 
process is then validated using split sample techniques.  The 
analysis is conducted on six patients consisting of 39 
preseizure records and 105 baseline records.   

 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 5.  Best wavelet packet energy for patient 9. 
 
 
V. CONCLUSION 
 

The optimal features selected by the genetic algorithm 
were different for each patient analyzed, suggesting that a 
patient specific predictor is necessary for prediction.  The 
results provide additional evidence regarding the necessity to 
separate asleep and awake records for optimal performance.  
The next step is to implement a classifier and apply a forward 
sequential approach to select the best feature vector among 
the derived optimal features.       
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